
1

<Insert Picture Here>

Johannes Schlüter
MySQL Engineering

MySQL & PHP

3

Johannes
Selbsternanntes Urgestein der Münchner PHP UG

From: Johannes Schlueter <php@schlueters.de>
To: phpuser-Muenchen
 <phpuser-muenchen@kbx7.de>
Subject: [phpuser-muenchen] Re: Weihnachtsfeier
 php User München
Date: Fri, 13 Dec 2002 14:13:41 +0100

4

Johannes?

$ php -r 'phpcredits();' | grep Johannes
CLI => Edin Kadribasic, Marcus Boerger, Johannes Schlueter,
Moriyoshi Koizumi, Xinchen Hui
MySQL driver for PDO => George Schlossnagle, Wez Furlong, Ilia
Alshanetsky, Johannes Schlueter
MySQLnd => Andrey Hristov, Ulf Wendel, Georg Richter, Johannes
Schlüter
Reflection => Marcus Boerger, Timm Friebe, George Schlossnagle,
Andrei Zmievski, Johannes Schlueter
tokenizer => Andrei Zmievski, Johannes Schlueter

<Insert Picture Here>

5

MySQL

6

MySQL Optimizer

• Subquery Optimizations

• File sort optimizations with small limit
– 4X better execution time – 40s to 10s

• Index Condition Pushdown
– 160X Better execution time – 15s to 90ms

• Postpone Materialization of views/subqueries in FROM
– 240X better execution time for EXPLAIN – 8m to 2s

• Batched Key Access and Multi Range Read
– 280X Better execution time – 2800s to 10s

7

MySQL Optimizer – Diagnostics and Debugging

• EXPLAIN
– INSERT, UPDATE, and

DELETE

– JSON format for better
readability

• Persistent Optimizer
Statistics - InnoDB

• Optimizer Traces

8

Performance Schema Improvements

• Statements/Stages
– Most resource intensive queries? Where do they spend time?

• Table/Index I/O, Table Locks
– Which application tables/indexes cause the most load or contention?

• Users/Hosts/Accounts
– Which application users/hosts/apps consume the most resources?

• Network I/O
– Network loaded? How long do sessions idle?

• Summaries
– Aggregate stats grouped by thread, user, host, account or object

9

dbahelper

• Views and stored procedures to work with
INFORMATION_SCHEMA and PERFORMANCE_SCHEMA

• Maintained by Mark Leith

git clone git@github.com:MarkLeith/dbahelper.git
cd dbahelper
mysql -uroot -p < ./ps_helper_56.sql

• Also for MySQL 5.5 and 5.7

10

mysql> select * from wait_classes_global_by_avg_latency
 where event_class != 'idle';
+-------------------+--------+-----------+-----------+-----------+-----------+
| event_class | events | tot_lat | min_lat | avg_lat | max_lat |
+-------------------+--------+-----------+-----------+-----------+-----------+
wait/io/file	543123	44.60 s	19.44 ns	82.11 µs	4.21 s
wait/io/table	22002	766.60 ms	148.72 ns	34.84 µs	44.97 ms
wait/io/socket	79613	967.17 ms	0 ps	12.15 µs	27.10 ms
wait/lock/table	35409	18.68 ms	65.45 ns	527.51 ns	969.88 µs
wait/synch/rwlock	37935	4.61 ms	21.38 ns	121.61 ns	34.65 µs
wait/synch/mutex	390622	18.60 ms	19.44 ns	47.61 ns	10.32 µs
+-------------------+--------+-----------+-----------+-----------+-----------+

(output slightly modified to fit on slide)

11

mysql> select * from innodb_buffer_stats_by_table;

+---------------+---------------------+-----------+-----------+-------+--------+---- -+--------+

| object_schema | object_name | allocated | data | pages | hashed | old | cached |

+---------------+---------------------+-----------+-----------+-------+--------+------+--------+

| InnoDB System | tinytiny/ttrss_e... | 41.95 MiB | 33.15 MiB | 2685 | 2685 | 2685 | 28595 |

| InnoDB System | tinytiny/ttrss_u... | 6.88 MiB | 4.67 MiB | 440 | 440 | 440 | 27510 |

| InnoDB System | piwik/piwik_arch... | 2.66 MiB | 1.36 MiB | 170 | 170 | 170 | 3505 |

| InnoDB System | piwik/piwik_arch... | 2.61 MiB | 764.9 KiB | 167 | 167 | 167 | 2201 |

(output slightly modified to fit, more or less, on slide)

<Insert Picture Here>

12

InnoDB

13

InnoDB in MySQL 5.5

Performance and Scalability
• Multiple buffer pool instances
• Multiple rollback segments
• Improved purge scheduling
• Extended change buffering with delete buffering and purge

buffering
• Native async I/O support on Linux
• Improved log sys mutex
• Separate flush list mutex
• Windows performance improvements

• Performance schema for InnoDB

14

InnoDB in MySQL 5.6

Performance and Scalability
• Split the kernel mutex

• Multi threaded purge

• Use rw_locks for page_hash

• Add 'page_cleaner' thread to flush dirty pages

• Ibuf merge rate improvement

• Configurable data dictionary cache

• InnoDB persistent optimizer statistics

• Read Only Transactions

15

InnoDB in MySQL 5.6

Monitoring & Diagnostics
• InnoDB Information Schema Metrics Table

• Information schema system tables for InnoDB

• Information schema table for InnoDB buffer pool

• InnoDB: report all deadlocks

16

InnnoDB Disk Improvements

• SSD optimizations

• Configurable page size (4K, 8K)
• Export/Import per table tablespaces
• Separate InnoDB Undo tablespaces
• Read Only media support

• Compression improvements
• Large (over 4GB) redo logs support

17

Online ALTER TABLE

• ADD [FULLTEXT] INDEX

• DROP INDEX

• ADD/DROP FOREIGN KEY

• ADD/DROP COLUMN

18

InnoDB Storage Engine

MySQL Server Memcached plugin

Application

SQL
(MySQL Client)

NoSQL
(Memcached

 Protocol)
mysqld

Key-value Access to InnoDB Data
• Fast, simple access to InnoDB
– via Memcached API

– Use existing Memcached clients

– Bypasses SQL parsing

• NotOnlySQL access
– For key-value operations

– SQL for rich queries, JOINs, FKs, etc.

• Implementation
– Memcached plug-in to mysqld

– Memcached mapped to native InnoDB
API

– Shared process for ultra-low latency

19

InnoDB FullText Search

• Support all query types supported by MyISAM:
– Natural language search

– Query expansion

– Boolean search

• Plus
– Proximity search

– Create full-text index with parallel tokenization and parallel sort

20

InnoDB FT: Parallel Indexing and Tokenization

innodb_ft_sort_pll_degree

1 4 8 16

InnoDB 7 min 48.12 sec 5 min 12.06 sec 4 min 10.95 sec 3 min 33.40 sec

MyISAM Around 11 min 30 sec
(innodb_ft_sort_pll_degree does not affect MyISAM)

Data Size : Approx 2.7GB, 1 million row , 238 million word
Platform: Linux x86 64 bit, 8 cores , 32 GB RAM

<Insert Picture Here>

21

Automatic Recovery

22

Crash-safe master – automatic binary log file trimming

• If the master crashes, binary log will recover
automatically from incomplete file flushes.

• On recovery:
– The active binary log is scanned and any log

 corruption is detected;
– Invalid portion of the binary log file is
 discarded and the file is trimmed.

23

Crash-safe slave - Slave Info Tables

• Transactional positioning – InnoDB based by default.
• Protection against slave crashes:
– Automatic recovery.

• Possibility to issue SELECTs on slave information.
– Possibility to code multi-source replication in pure SQL.

• Automatic conversion between files and tables on startup.

24

Crash-safe slave - Slave Info Tables

• System tables:
– slave_master_info (master.info)
– slave_relay_log_info (relay-log.info)

• Positional info transactionally stored with the data in tables.

<Insert Picture Here>

25

Automatic Switchover/Failover

26

Automatic Switchover/Failover: Global Trans Ids

• Promote any slave to be the new master.
• Automatically pick replication stream correctly:
– Slave auto-positioning;
– Slave automatically skips transactions that already exist
in the server.

27

Automatic Switchover/Failover: Global Trans Ids

• Two major parts:

1. Logical Identifier: (Server UUID, Transaction Number);

2. Server State: set of applied transactions.

● Designed to work with transactional engines (InnoDB).

28

Automatic Switchover/Failover: Global Trans Ids

● The identifier:
― Abstracts physical positions into logical identifiers –
human friendly;
― It is uniquely assigned when the transaction executes;
― It is preserved when the transaction is re-applied.

● The server state:
― Enables slave auto-positioning;
― Failover facilitator – reduced administration overhead;
― Protects against undesirable transaction re-execution.

29

Automatic Switchover/Failover: Global Trans Ids

● Persistence:
― It is written to the binary log.
― Precedes a collection of events that comprise a
transaction.

GTID BEGIN ...Ev1 Ev2 COMMIT GTID BEGIN ...GTID Ev1

Transaction 1 Transaction 2

Transaction

Identifier
Transaction

Identifier

COMMIT

Binary LogBinary Log

30

Automatic Switchover/Failover: mysqlfailover

● Check and report health at specific intervals in seconds.
● Automatic failover.

31

Automatic Switchover/Failover: mysqlrpladmin

● General replication administration utility: start, stop,
topology health, elect, failover, switchover, gtid.

● On-demand failover or switchover.

32

MySQL Utitlities

• A collection of Python utilities for managing MySQL databases
• Originally MySQL Workbench Plugin
• Available under the GPLv2 license
• Written in Python
• Python library to grow solutions for common administrative

problems

33

MySQL Utilities

• Easily administer MySQL servers from the command line
– mysqldbcompare – compare databases

– mysqldbcopy – copy databases between servers

– mysqlfailover – Automatic fail-over

– mysqlrpladmin – General replication administration utility

– mysqlrplshow – show a graph of your topology

– mysqlreplicate – setup replication

– mysqlrplcheck – check replication configuration

– ...

• Build your own tools on top of the core of the library

34

MySQL Fabric

An integrated environment for managing a farm of MySQL
server supporting high-availability and sharding.

http://labs.mysql.com

NEW

35

MySQL Fabric

• “Farm” Management System

• Distributed
• High-Availability
• Sharding
• Procedure Executor

• Extensible

• Written in Python
• Early alpha
– Long road ahead

• You can participate
– Suggest features

– Report bugs

– Contribute patches

• MySQL 5.6 is focus

36

MySQL Fabric

• Decision logic in connector
– Reducing network load

• Support Transactions
– API to provide sharding key

• Global Updates
– Global Tables

– Schema updates

• Procedure Executor

• Shard Multiple Tables
– Using same key

• Sharding Functions
– Range

– (Consistent) Hash

• Shard Operations
– Using built-in executor

– Shard move

– Shard split

37

PHP: mysqlnd_ms

● Plugin for PHP for doing load-balancing
● ms originally meant “master / slave”
● http://dev.mysql.com/doc/refman/5.5/en/apis-php-

book.mysqlnd-ms.html
● Uses GTIDs to ensure sending users to a slave which

received data we wrote before
● 1.6.0-alpha added MySQL Fabric Support

38

mysqlnd_ms 1.6.0 configuration

{
 "test" : {
 "fabric":{
 "hosts": [{
 "host": "localhost",
 "port": 8080 }]
 }
 }
}

39

mysqlnd_ms 1.6.0

<?php
$c = new mysqli("test", "root", "", "test");

echo "Creating global table:\n";
mysqlnd_ms_fabric_select_global($c, "test.fabrictest");
$c->query("CREATE TABLE fabrictest (id INT NOT NULL)");

echo "Inserting with ID 10:\n";
mysqlnd_ms_fabric_select_shard($c, "test.fabrictest", 10);
$c->query("INSERT INTO fabrictest VALUES (10)");
?>

40

PHP's MySQL Architecture

PHP

ext/mysql

mysqli

PDO_mys
ql

MaySQL
Server

PHP
Script

41

API Choice

• mysqli
●Support for all MySQL
features

●Best support / stability
● Integration with existing
applications / environments

• PDO_MYSQL
●Simple applications supporting
multiple databases
–API-compatibility is often not
enough, though

● Integration with existing
applications / environments

42

Three kinds of PHP Users

Custom applications built
on i.e. Symfony, Zend
Framework or CakePHP

Built on DB abstraction
Layers

Abstractions hide full
power of MysQL

Quick'n'Dirty ApplicationsUsers of existing
Applications

Framework-based
Applications

Ad-hoc developed
applications

Code often mixture of
PHP with embedded
SQL etc.

Hard to scale/adapt to
new situations

Take existing applications
(i.e. Wordpress, phpBB,
moodle, ...)

Little customization only

Often hard to scale

43

On-Going Demands

Improve Security!

Better performance!

More Scalability!

Higher Availability!

Refactor the application!

44

Solving these requests

PHP

Infrastructure

P
H

P
 M

em
or

y

P
H

P
 S

tr
ea

m
s

...

PHP Extension (Module) Interface

ext/mysql mysqli pdo_mysql

mysqlnd

MySQL Server

45

mysqlnd in depth

mysqlnd

mysqlnd:query

mysqlnd:prepare

mysqlnd_result:fetch_row

mnd::allocate

mysqlnd_net:send
mysqlnd_net:read_result

46

myslqnd Plugins

●Loaded as regular PHP extension
●Written in C

●Hook into mysqlnd in any level
●From high-level APIs (query, prepare fetch_row, etc)
●To low-level (network IO, memory allocation)

●Can be 100% transparent
●Can provide userspace APIs which can work with
ext/mysql, mysqli and PDO_mysql instances

47

What can Plugins be used for?

Performance

Scaling Out Monitoring

mysqlnd

Query Logging
Query Analysis
Query Auditing

Caching
Throttling
Sharding

Read/Write Splitting
Failover
Round-Robin

48

Existing Plugins

• Stable open source:
– mysqlnd_uh – Userspace Handler

– mysqlnd_ms – Repliation and load balancing

– mysqlnd_qc – Client Side Query Cache

– mysqlnd_memcache – memache mapping

• Experimental openn source:
– mysqlnd_mc – multi connect

– mysqlnd_pscache – prepared statement cache

– mysqlnd_sip – SQL injection protection

• Commercial
– MySQL Enterprise Query Analyzer

49

<Insert Picture Here>

Multi-Threaded Slaves

50

Dump

Binary log

I/O SQL

Relay log

SlaveMaster

Session 1
Session 2

Session n

The problem

Replication system architecture: multi-threaded master vs
single threaded slave applier

51

The problem

• Multicore on the Master and the Slave

• Recent progress of scaling-up the Innodb engine
• Slave side needs to match an upcoming solution for

group commit to the binary log to overcome deficiency of
the current architecture

52

Facilities & Prerequisites

• The user application is
logically partitioned per
database

• The user application is
content with local
database consistency

53

Requirements

• Arbitrary manually configurable number of Worker
threads

• All binary log formats supported

• All storage engines supported
• Automatic fallback to sequential execution for

statements that do not comply with parallel execution
• Automatic recovery in face of crashes in the case of the

Innodb engine

54

Overview of architecture

• SQL thread is split into Coordinator and Worker threadsSQL thread is split into Coordinator and Worker threads

communicating in style of the producer-consumer model
• Coordinator activities include:

read replication event, handle Skip-Until-Delay options

and find an appropriate Worker to execute the rest.

• Worker activities include:

apply the event including the commit of transaction.
• Coordinator and Worker cooperate on recovery provision

<Insert Picture Here>

55

MySQL 5.7
Development Milestones

56

57

58

MySQL 5.7 – OLTP_RO Point-Selects 8-tables

• UNIX socket, sysbench 0.4.8

59

MySQL 5.7 – Connections per Second

60

MySQL 5.7 – Multi-Source-Replication

61

MSQL 5.7 – EXPLAIN

• Problem: A statement in a session is taking too long

• New option:
– EXPLAIN FOR CONNECTION fromother session
EXPLAIN [FORMAT=(JSON|TRADITIONAL)] FOR CONNECTION id

62

MySQL 5.7 – InnoDB

• Improved Online ALTER TABLE
– Online RENAME INDEX

– Online change VARCHAR

• Improved InnoDB Temp Tables
– New separate tablespace for temp tables

– Improved CREATE/DROP performance for temp tables

• Optimized temp table DML
– No REDO logging, no change bffering, no locking

63

Summary

With MySQL 5.6 and 5.7 we want to be

… more scalable

… faster

… better obsersvable

… more stable

… help operations

The world's most popular open source database

64

Resources

• Blog from MySQL Engineering VP Tomas Ulin
http://insidemysql.com/

• Group Blog of the MySQL Server Team
http://mysqlserverteam.com

• Ulfs Blog (mysqlnd and other things)
http://blog.ulf-wendel.de

• Benchmark Details by DimitriK
http://dimitrik.free.fr

http://insidemysql.com/
http://mysqlserverteam.com/
http://blog.ulf-wendel.de/
http://dimitrik.free.fr/

65

Johannes Schlüter

johannes.schlueter@oracle.com
Twitter: @phperror
Blog: http://schlueters.de/blog

66

The preceding is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract.
It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described
for Oracle’s products remains at the sole discretion of Oracle.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

